




$$f(t) = \mathcal{L}^{-1}\{F\}(t) = rac{1}{2\pi i} \lim_{T o\infty} \int_{\gamma-iT}^{\gamma+iT} e^{st} F(s)\,ds,$$

$$z \stackrel{ ext{def}}{=} e^{sT}, \quad x[n] \stackrel{ ext{def}}{=} x(nT) \ . \quad X(z) = \sum_{n=0}^{\infty} x[n] z^{-n}$$



Author: Chris Ailey

Role: Verification & Validation Architect

Date: October 19th, 2017

30 mins



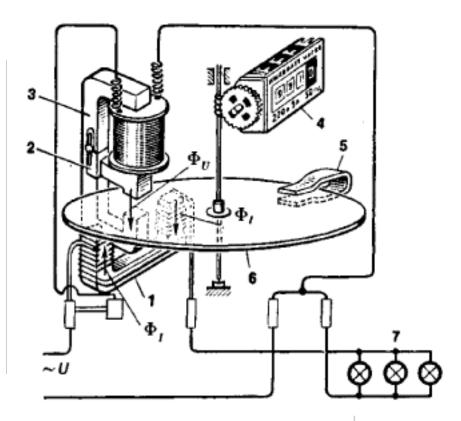
#### Overview

- Electro-mechanical vs digital meters
- Costs and benefits of going digital
- International metrological committees
- Evolution of metering standards
- International approaches to revenue metering

### Changing landscape of metering

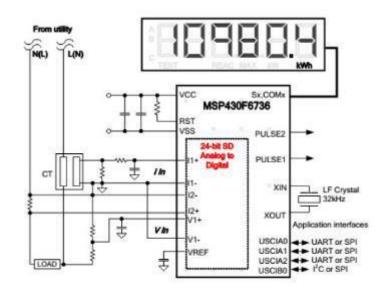
- Technological developments and challenges
- Implications of IoT and renewables

### A Bright Future for Metering !!


Technological promise and the challenges ahead ...

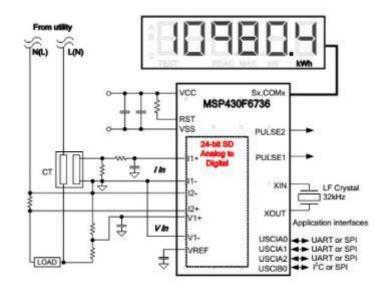





### Mechanical Electricity Metering

- Disc spin indicates energy consumption rate
  - Kh [Wh/rev] traditionally
- Inducing eddies in disk cause it to rotate Lenz's Law
- Not easy to re-configure
- Limited number of metrics
- Manual read of register
- Remote communications or pulse train generation requires add-on modules
- Traditionally, no on-board clock or calendar






- Digital Electricity Metering
- Transducers and digital sampling
- Easy to configure for a specific installation
  - Change CT/PT ratios, Different service types etc.
- Numerous metric algorithms
  - Energy, inst. power, voltage, current, PF, harmonics etc.
- Electrical pulse train indicates energy consumption rate
  - Kh [Wh/impulse] or [impulses/kWh]
- Native Communications functions
  - Supporting multiple protocols requires only FW
- High accuracy digital time reference





- Digitizing the Signals
  - Transducers generate low voltage measurements
    - Voltages Simple resistive voltage dividers
    - Currents CTs, Hall effect sensors, Rogowski coils etc.
- LV signals are sampled periodically by an Analog to Digital converter (A/D)
  - Heuristic is to sample at least twice the maximum frequency in the signal
  - Anti-aliasing filters prevent "folding back" of high frequency samples
- Samples are then input into algorithms which generate the power quality metrics
  - RMS values, Power Factor, harmonics etc.
  - Energy values are derived by integrating or summing power values over "discrete" time





### Mechanical Meters

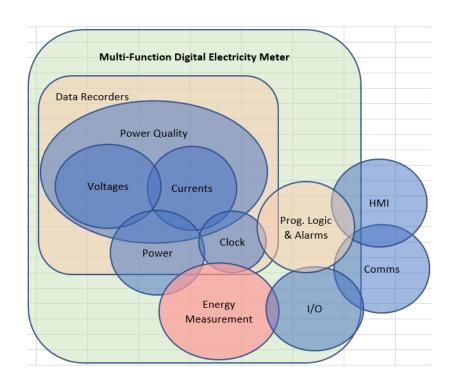
- Typically Class 1, 2 or 5 only
- No waveform capture capability
- Limited harmonic influence verification
- No harmonics measurement capability
- Traditionally manual register reads or pulse counting



### Digital Meters

- Class 0.1, 0.2 and 0.5
- Waveform capture and analysis
- Wide harmonic measurement range
- Power quality metrics
- Register(s) available over communication channel(s)






### Multi-Functions ... More than a Meter

- Basically industrial grade computers under glass
- Power quality metrics
- On-board data recorders provides trending information
- Communications through numerous protocols and channels
- Digital and analog I/O integration
- On board memory and data recorders
- State machine programmability

### Increasing complexity has it trade-offs

- Sealing and anti-tampering provisions
- Cyber-security provisions like encryption and RBAC





**Metrology - Guide to the Expression of Uncertainty in Measurement (GUM)** 

- Joint Committee for Guides in Metrology (JCGM)
  - · Developed by internationally recognized institutes
    - BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML
- Covers any Metrological measurements
  - Type A vs Type B measurement methods
  - Moving away from the idea of "true value" and "absolute error"
  - Now random and systemic uncertainties
  - Combination of uncertainties based on individual probability distributions
- Approach is for measurement value reported with uncertainty and confidence interval
  - Allows for better alignment of results from different laboratories



$$v = 2 * \sqrt{\frac{v_{base}^2}{4} + \frac{v_{voltage}^2}{4} + \frac{v_{frequency}^2}{4} + \frac{v_{unbalance}^2}{4} + \frac{v_{harmonic}^2}{4} + \frac{v_{temperature}^2}{4}}$$

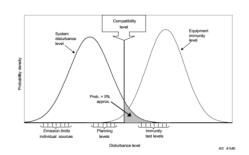
$$e_c = 2*\sqrt{\frac{e_{base}^2}{3} + \frac{e_{voltage}^2}{3} + \frac{e_{frequency}^2}{3} + \frac{e_{unbalance}^2}{3} + \frac{e_{harmonic}^2}{3} + \frac{e_{temperature}^2}{3}}$$



**Standards – Scope of Type Testing** 



- ANSI C12.20 2015
- IEC 62052-11 and IEC 62053-22 (ed.2 2018)
- OIML R46


### Generic Scope

- Accuracy & repeatability with Influence quantities
- Mechanical, environmental and durability
- EMC & Safety
- Class 0.1 performance definition in latest versions of both ANSI and IEC standards













#### **Standards – ANSI Scope of Testing**

- ANSI C12.20 2015 now has 44 tests !!
  - **6 more** over and above the 2010 edition
  - Accuracy Class 0.1 definition
- Test scope
  - Accuracy over range and influence quantities
  - **EMC & Safety**
  - Mechanical and environmental
- New accuracy tests for waveforms
  - Shark-Fin, Quadiform, Peaked and Pulse
  - Multiple zero crossings on current and voltage

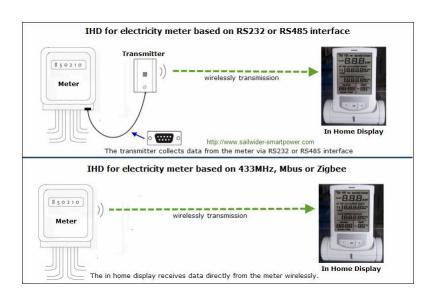
| ANSI C12.20    | Descriptions Of Certification Tests                             |
|----------------|-----------------------------------------------------------------|
| Test #1        | No Load                                                         |
| Test #2        | Starting Load                                                   |
| Test #3        | Load Performance                                                |
| Test #4        | Effect of Variation of Power Factor                             |
| Test #5a or 5b |                                                                 |
|                | Effect of Variation of Voltage                                  |
| Test #6        | Effect of Variation of Frequency                                |
| Test #7        | Equality of Current Circuits                                    |
| Test #8        | Internal Meter Losses                                           |
| Test #9        | Temperature Rise                                                |
| Test #10       | Effect of Register Friction                                     |
| Test #11       | Effect of Internal Heating                                      |
| Test #12       | Effect of Tilt                                                  |
| Test #13       | Stability of Performance                                        |
| Test #14       | Effect of Polyphase Loading                                     |
| Test #15       | Insulation                                                      |
| Test #16       | Voltage Interruptions                                           |
| Test #17       | Effect of High Voltage Line Surges                              |
| Test #18       | Effect of External Magnetic Field                               |
| Test #19       | Effect of Variation of Ambient Temperature                      |
| Test #20       | Effect of Temporary Overloads                                   |
| Test #21       | Effect of Current Surges in Ground Conductors                   |
| Test #22       | Effect of Superimposed Signals                                  |
| Test #23       | Effect of Voltage Variation-secondary Time Base                 |
| Test #24       | Effect of Variation of Ambient Temperature -Secondary Time Base |
| Test #25       | Electrical Fast Transient/Burst                                 |
| Test #25a      | Effect of electrical oscillatory SWC test                       |
| Test #26       | Effect of Radio Frequency Interference                          |
| Test #27       | Radio Frequency Conducted and Radiated Emission                 |
| Test #28       | Effect of Electrostatic Discharge (ESD)                         |
| Test #29       | Effect of Storage Temperature                                   |
| Test #30       | Effect of Operating Temperature                                 |
| Test #31       | Effect of Relative Humidity                                     |
| Test #32       | Mechanical Shock                                                |
| Test #33       | Transportation Drop                                             |
| Test #34       | Mechanical Vibration                                            |
| Test #35       | Transportation Vibration                                        |
| Test #36       | Weather Simulation                                              |
| Test #37       | Salt-spray                                                      |
| Test #38       | Rain-tightness                                                  |
| Test #39       | 90 Degree Phase Fired Waveform                                  |
| Test #40       | Quadriform Waveform                                             |
| Test #41       | Peaked Waveform                                                 |
| Test #42       | Pulse Waveform                                                  |
| Test #43       | Multiple zero crossings on current                              |
| Test #44       | Multiple zero crossings on voltage                              |
| 1031 #44       | watapic zoro orosalitys ori voltage                             |



#### **Revenue Metering – International Approaches**

- Measurement Instrument Directive (MID)
  - Applicable in EU member states (28) + others
  - Directive outlines the legal essential requirements for all instruments
  - EN50470 series of harmonized standards
  - Max Permissible Error (MPE) is a combination of uncertainties
  - Includes software requirements to ensure data integrity
- Requirements also for the production facility
  - ISO 9001 and EN 52058-31 requirements
  - Annual audits of manufacturing
- Resealing period varies by country (5 to 20 years)
- Onus of correct commissioning resides with installer
  - Training requirements vary by country .. See WELMEC website







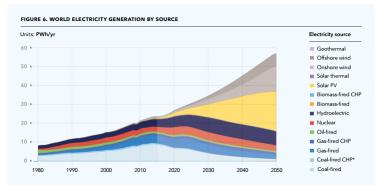



#### **The Future - Revenue Metering**

- ANSI C12.1 was first ratified in 1910
- Legislation always lags the technological potential ...
  but there has been progress:
  - Measurement Canada now has a specification to address remote displays (PS-E-17)
  - WELMEC (MID app guides) has a new guide (11.7) for a modular evaluation active energy meters
- Potential revenue meter designs with customer demand today
  - Single remote display for a number of metering points (tenant sub-metering, branch circuit monitoring etc.)
  - De-coupling of the voltage and current measurement channels
- Why does a revenue meter require a local display?



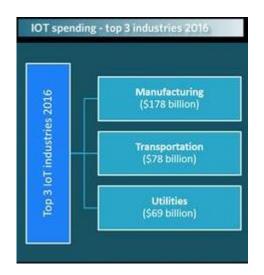







#### The Future - PQ storm on the horizon

- Inverter "rich" generation is a new presence on the grid
  - Proliferation of renewables forecast to continue
  - Inverter switching can spectrally "pollute" the mains
  - Can negatively effect equipment operations and lifetimes
  - New immunity requirements for 2-150kHz for meters (EN 50579)
- PQ analysis like EN50160 and IEEE519 at more PCCs
  - Trend in both of these standards has increasing bandwidth
    - EN50160 has increased from 25<sup>th</sup> to 40<sup>th</sup> harmonic (2.4kHz)
    - IEEE519 has increased from 35<sup>th</sup> to 50<sup>th</sup> harmonic (3kHz)
- Given the trends, its reasonable to expect the PQ measurement bandwidth to continue to broaden








#### The Future – Internet of Things

- Explosion in the number of connected devices
  - Forecasts project 30 billion devices by 2020
- Its really all about providing more customer value
  - Turing data into actionable information
  - Modelling and automating more scenarios



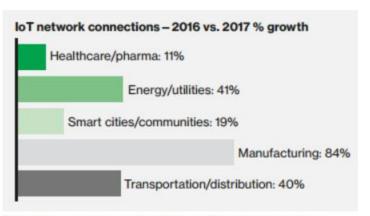
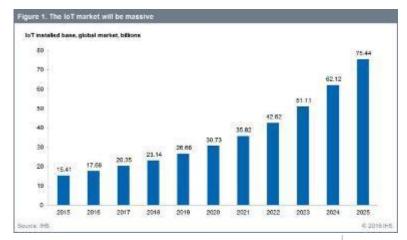
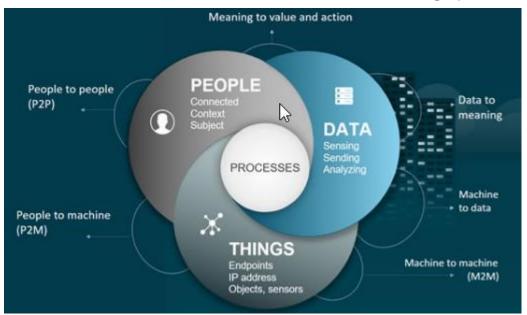




Figure 1: Year-on-year growth in Verizon IoT network connections



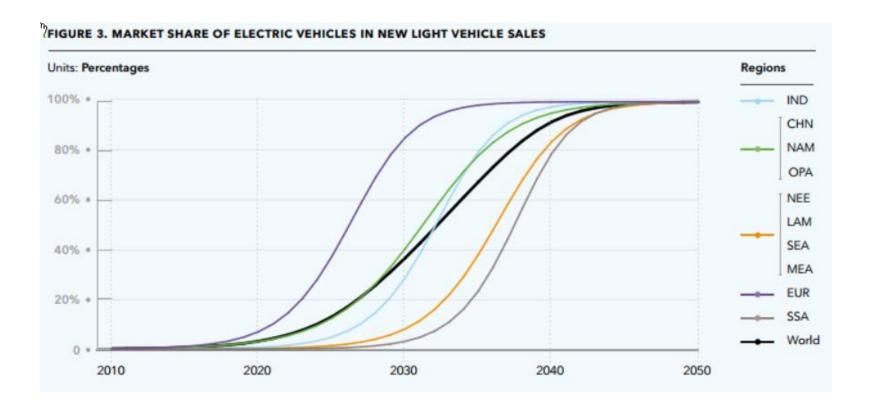


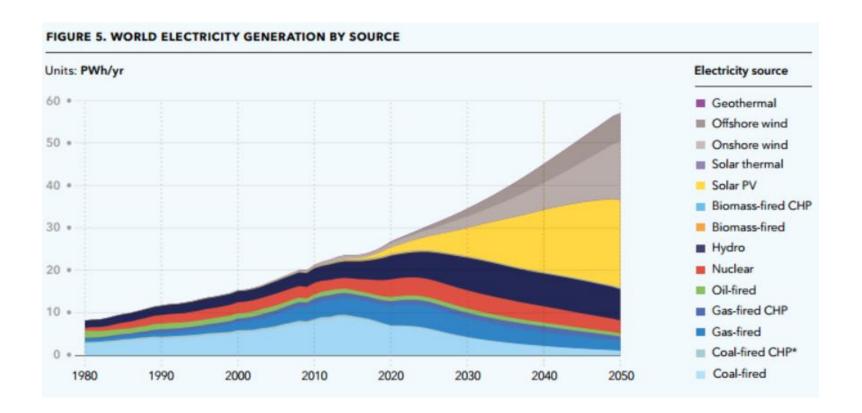



### The Future – Metering, IoT and PQ synergy

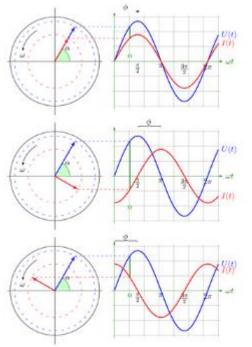
- The Future of Metering is Bright!!!
- The shifting landscape will provide numerous opportunities
- The revenue meter is another device in the evolving spiral of the Internet of Things






# Thank-You!!


Any Questions?



